

Developing lab standard procedures and guidelines to improve uptake of eDNA methods by resource managers: An overview of two national-scale projects (READI-Net and iTrackDNA)

Columbia River Basin AIS Team Meeting June 2023

> ¹Katy Klymus ²Margaret Hunter ³Caren C. Helbing ⁴Valerie S. Langlois ³Jacob J. Imbery ⁴Julie Couillard ⁵Adam Sepulveda

- 1 U.S. Geological Survey, Columbia Environmental Research Center, Columbia, MO, U.S.A.
- 2 U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, U.S.A.
- 3 Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
- 4 Institut National de la Recherche Scientifique, Quebec City, Quebec, Canada
- 5 U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT, U.S.A

- U.S. Geological Survey (USGS) is a United States federal agency within the Department of the Interior.
- Conducts data collection, monitoring, and scientific understanding of the nation's water, energy, mineral and biological resources as well as natural hazards monitoring (i.e. earthquakes, flooding)
- Provide quality scientific information to the public and policy makers (https://www.usgs.gov/)

ECALS – eDNA Calibration Study

Invasive Carp Regional Coordinating Committee

Objective: Understand eDNA detections of invasive carps in the Chicago Area Waterways System

Aimed to:

- Develop new markers
- Understand shedding and degradation rates of carp eDNA
- Assess likelihood of alternative vectors or sources of carp eDNA signal

U.S. Fish and Wildlife Service's bighead and silver carp eDNA monitoring program

- Monitoring the Great Lakes, Illinois, Upper Mississippi and Ohio river systems
- In conjunction with numerous state agencies
- One of the largest and most well developed eDNA monitoring programs in the U.S.

USGS labs involved in eDNA research

Transitioning eDNA science from research to management

• Wildlife and natural resource managers are still hesitant to use eDNA tools:

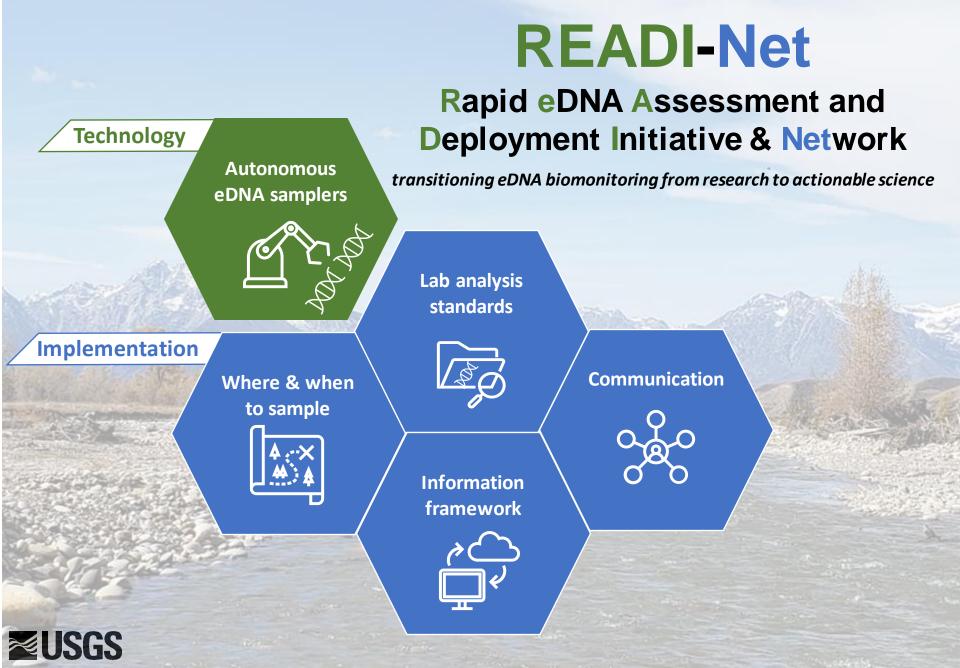
Can eDNA tell me if a species is present in an area? How trustworthy is that data?

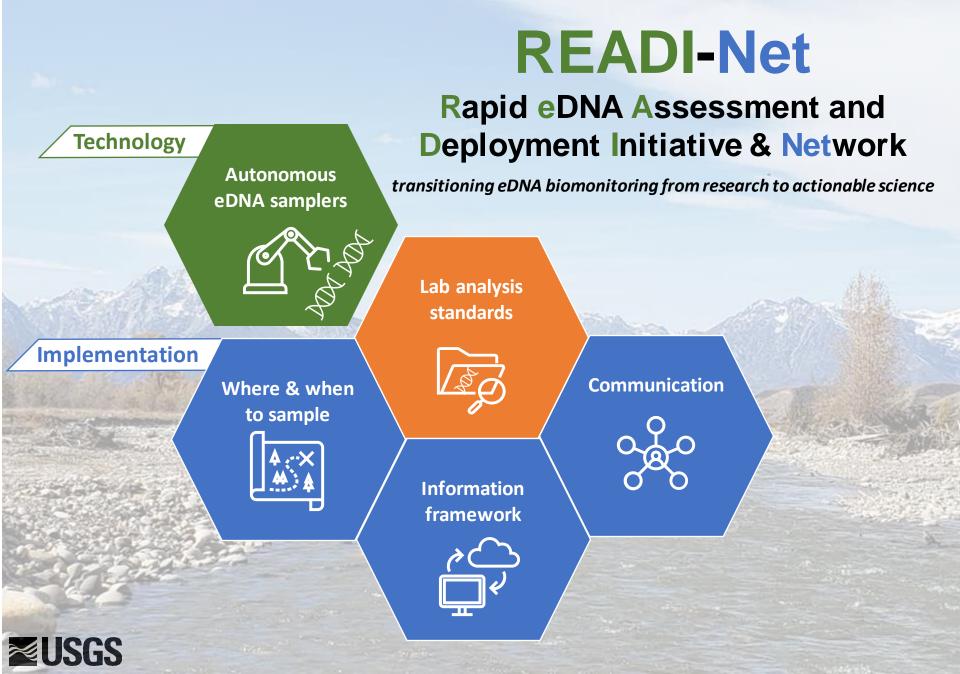
- Reasons for limited uptake are many but can be distilled to:
 - 1. poor communication about the state of the science
 - 2. lack of trust in the accuracy and reliability of the data

3. limited integration of decision-makers in the research and development process (e.g., Darling 2015).

Transitioning eDNA science from research to management

• Wildlife and natural resource managers are still hesitant to use eDNA tools:


Can eDNA tell me if a species is present in an area? How trustworthy is that data?


- Reasons for limited uptake are many but can be distilled to:
 - 1. poor communication about the state of the science
 - 2. lack of trust in the accuracy and reliability of the data

3. limited integration of decision-makers in the research and development process (e.g., Darling 2015).

• Lack of standard methods can lead to uncertainty or concern over quality of results and subsequent interpretation. (#2 above)

READI-Net

Rapid eDNA Assessment and Deployment Initiative & Network

Goal: Develop standards and guidelines for eDNA analysis workflow among labs that will be participating in the READI-Net network

- Assess repeatability and reproducibility within and across labs via interlaboratory calibration studies and the development of within and between lab proficiency testing
- Create a **standards and guideline document** for lab analysis of READI-Net samples based off of NAS eDNA database standards

Rapid eDNA Assessment and Deployment Initiative & Network

NAS:

USGS Nonindigenous Aquatic Species (NAS) Database (<u>https://nas.er.usgs.gov/</u>)

Incorporation of eDNA data into this database required the development of standards and guidelines (Ferrante et al. 2022)

• Collection, Sample Processing, Contamination (Collection, Extraction, PCR), PCR Assay (Validation, Optimization, Standard curve), Reporting

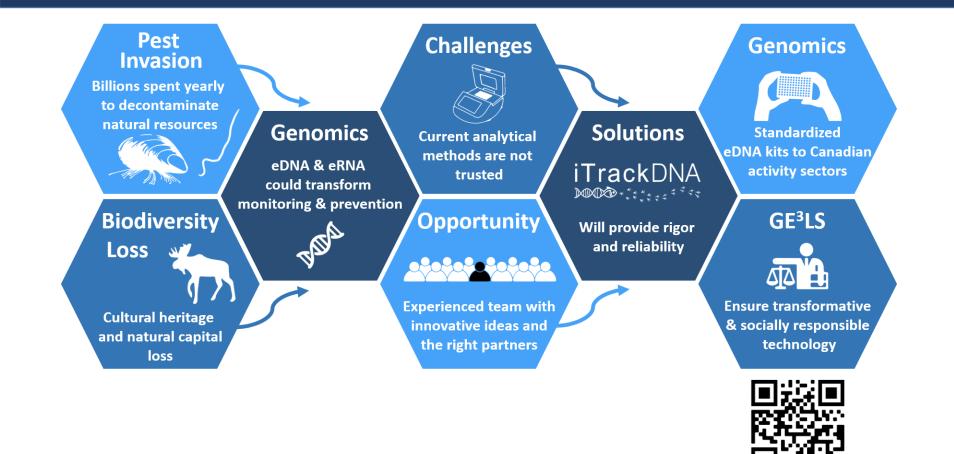
iTrackDNA – Tracking at-risk and invasive species with confidence: Opportunities and challenges of eDNA approaches

Caren HELBING Project Shared Leader

Valerie LANGLOIS Project Shared Co-Leader

Jérôme DUPRAS Project Co-Leader & GE³LS Leader

Louis BERNATCHEZ Project Co-Leader


GenomeCanada

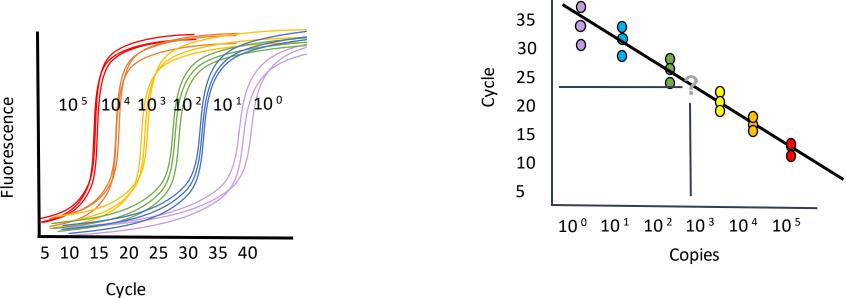
iTrackDNA

Tracking at-risk and invasive species with confidence: Opportunities and challenges of eDNA approaches

iTrackDNA

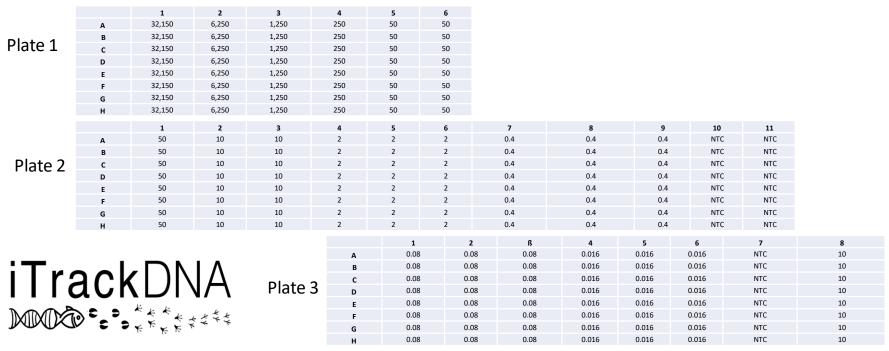
Tracking at-risk and invasive species with confidence: Opportunities and challenges of eDNA approaches

Purpose: To establish lab protocols and set lab performance baselines


Phase 1: Assess variation between labs in running standard curves for qPCR/ dPCR

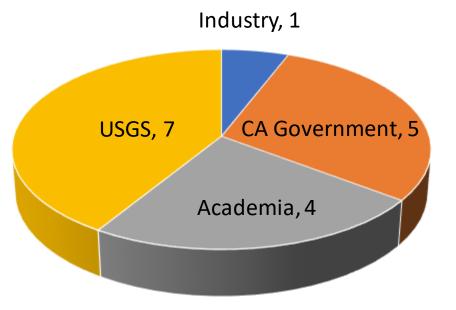
Methods:

- Each lab ran multiple replicates of standard qPCR standard curves using the same assay
- All reagents and standards were provided by a central lab
- Variables: labs prepare plates with provided serial dilutions, different qPCR thermocycler
- Assessment: LOD and LOQ of each labs curve was measured



40

iTrackDNA

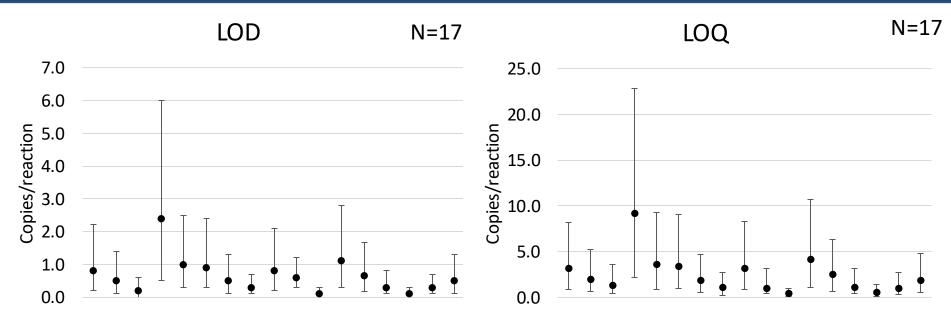

- Five-fold serial dilutions ranging from 62,500 to 500 copies/reaction (n=8 technical replicates) and 100 to 0.032 copies/reaction (n=24) were prepared in bulk plus 24 NTCs and aliquoted for distribution to participating labs
- Each lab ran three plates of the serial dilutions and used eLOWQuant (Lesperance et al. 2021) to calculate LOD and LOQ

Results:

iTrackDNA

- Total number of participating labs: 17
- USGS READInet program: 7 labs
- Experimental design is consistent with draft Canadian Standards Association (CSA) eDNA standard

First CSA Group



CSA W214:21

GROUP

iTrackDNA – Interlab calibration studies LOD and LOQ Results

Statistic	LOD (copies/rxn)	LOD 95% CI Lower	LOD 95% CI Upper	LOQ (copies/rxn)	LOQ 95% CI Lower	LOQ 95% CI Upper
Median±MAD	0.5±0.3	0.4±0.2	0.8±0.6	1.9±1.2	1.3±0.9	2.9±2.0
MAX	2.40	1.90	3.60	9.20	7.00	13.60
MIN	0.10	0.10	0.20	0.40	0.30	0.60

iTrackDNA

Methods:

- Multiple assays
- Labs will purchase reagents
- Labs will prepare own standard curves given a specific protocol

Results: June 2023

Future Phases:

- Different enzyme/ mastermixes
- Use of tRNA
- Extraction methods

Conclusions

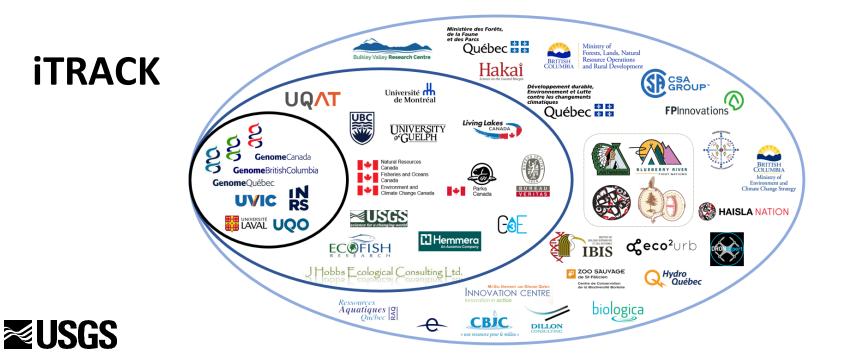
- Lack of method standardization may contribute to the lack of implementation by managers
- There are a numerous guidelines and standards being produced by various entities (examples: CSA, eDNA Society, USDA Genomics, NAS, Aquanet, Finland, Australia)
- We are utilizing these to develop standards specifically for the READinet and iTRACK programs in order to:
 - 1. Understand what variables most strongly influence lab variation
 - Phase 1 iTRACK: the 17 labs had very low variation in LOD and LOQ, suggesting good lab technique and instrumentation differences were not problematic
 - 2. Act as a demonstration to the management community.

Acknowledgements

READI-net

Elliot Barnhart Sara Eldridge **Stephen Spear** Chris Merkes Tariq Tajjioui Murulee Byappanahalli Ashley Spoljaric **Patrick Hutchins David Pilliod** Amanda Boone John Stechly **Caitlin Beaver**

Devin Iones Nathan Thompson Megan Voshage



Funding

READI-net

This project is one among a set of coordinated projects funded by (or in part by) the Bipartisan Infrastructure Law through the US Department of the Interior to advance a nationally coordinated Early Detection and Rapid Response Framework.

Questions?

Katy Klymus kklymus@usgs.gov

