Evaluating the Efficacy and Environmental Impacts from In-Water Cleaning of Comercial Vessels

Chris Scianni California State Lands Commission Marine Invasive Species Program

Pacific Ballast Water Group March 30, 2022

Traditional paradigm of reactive in-water cleaning

Modified from: Scianni and Georgiades 2019

https://www.frontiersin.org/articles/10.3389/fmars.2019.00467/full

Newer Paradigm of Reactive In-Water Cleaning and Capture

Modified from: Scianni and Georgiades 2019

https://www.frontiersin.org/articles/10.3389/fmars.2019.00467/full

Questions:

- How well do the systems clean?
- How well do the systems contain the removed debris at the point of cleaning?
- How well do the systems filter/treat the effluent before discharge?

Proactive Cleaning

Proactive in-water cleaning

Modified from: Scianni and Georgiades 2019

https://www.frontiersin.org/articles/10.3389/fmars.2019.00467/full

Questions:

- How well do the systems clean?
- Are biocides released? If so, at what concentration?

Environmental risks associated with inwater cleaning

Reactive IWCC:

- Cleaning effectiveness
- Debris capture efficiency
- Filtration/treatment/removal efficiency

Proactive IWC:

- Cleaning effectiveness
- Biocide release?

Project Team

https://www.act-us.info/

https://www.maritime-enviro.org/index.php

Environmental risks associated with reactive in-water cleaning with capture

Reactive IWCC:

- Cleaning effectiveness
- Debris capture efficiency
- Filtration/treatment/removal efficiency

Environmental risks associated with reactive in-water cleaning with capture

Vessel 1:

- Baltimore, MD
- Heavy biofouling: 60-100%
- Low visibility: < 1m

Vessel 2:

- Alameda, CA
- Moderate biofouling: 50-75%
- Low visibility: < 1m

Reactive IWCC:

Cleaning effectiveness

Surface Type	Number of Plots	Number of Images Within One Plot	Total Photos
Vertical flat	6	16	96
Horizontal flat	6	16	96
Vertical curved	6	16	96
Angled Surfaces	6	5	30

Reactive IWCC:

- Debris capture efficiency
- Filtration/treatment/removal efficiency

Modified from: Tamburri et al., 2020.

https://www.frontiersin.org/articles/10.3389/fmars.2020.00437/full

Water Quality Parameters:

- Biocides (Cu, Zn)
- TSS, POC, DOC

Particle size distribution

ACT/MERC IWCC Evaluation Report Evaluation of Subsea Global Solutions In-Water Cleaning and Capture Technology for Ships April 3, 2019

Questions and comments should be directed to:

Dr. Mario Tamburri Director, ACT and MERC CBL/UMCES 146 Williams Street Solomons, MD, 20688, USA Email: tamburri@umces.edu https://www.maritimeenviro.org/Downloads/Reports/ MERC_Inwater/ACT_MERC_SGS IWCC_Evaluation_Report.pdf

California State
Lands Commission

Proactive IWC:

- Cleaning effectiveness
- Biocide release?

Primary vessel:

- Start project immediately after dry dock
- 3x Biofouling/biofilm presence absence sampling
- 3x Water Quality sampling during cleaning

Secondary vessels (2):

 1x Water Quality sampling per vessel during cleaning

Proactive IWC:

Cleaning effectiveness

Proactive IWC:

Biocide release?

Water Quality Parameters:

- Biocides (Cu, Zn)
- TSS, POC, DOC

- Particle size distribution
- Microplastics

Discrete background samples one day before, two hours before, two hours after and one day after cleaning

Sample schedule for Primary Vessel:

- Dry dock and new coating: September 17, 2021
- Dive survey 1: October 2021 in Long Beach
- WQ sampling 1: November 2021 in Baltimore
- Dive Survey 2: March 2022 in Long Beach [last week]
- WQ sampling 2: April 2022 in Baltimore [next week]
- Dive survey 3: [TBD]
- WQ sampling 3: [TBD]

Next Steps

- Finish last two rounds of sampling for primary vessel
- Identify secondary vessels and conduct WQ sampling during proactive cleaning operations
- Produce public report and prepare manuscript for journal peer-review
- Use our experience to offer guidance to permitting agencies on important considerations (next slide)

Technical Considerations for IWC Policy

Front. Mar. Sci. 8:804766. doi: 10.3389/tmars.2021.804766

going ships (Woods Hole Oceanographic Institute, 1952). Biofouling of the global shipping fleet,

which is responsible for transporting approximately 80% of the world's goods and materials

www.slc.ca.gov

THANK YOU & QUESTIONS

Chris Scianni
Marine Invasive Species Program
Chris.Scianni@slc.ca.gov

562 400 6300

562.499.6390

@CAStateLands

