
WSU's 2023 Dreissenid Mussel Early Detection Monitoring in the Columbia River

Steve Bollens
Gretchen Rollwagen-Bollens
Julie Zimmerman
School of the Environment
Washington State University

Location and number of samples to be collected in 2023 (Bi-weekly, May through October)

Sampling Location	Number of Net Samples	Number of eDNA Samples
Lake Celilo, WA	41	12
Rowland Lake	41	12
Bingen Harbor	41	12
White Salmon	41	12
White Salmon River at Underwood CUR	41	12
Drano Lake	41	12
Wind River	40	12
Stevenson	40	12
Near Bonneville Lock, Hamilton Recreation area	40	12
Beacon Rock SP	40	12
Washougal Marina	40	12
Vancouver, near Kaiser Memorial Park	40	12
Total	486	144

Location of samples collected in 2023

Risk assessment data used to direct sampling

Table 21. Water bodies in Washington that have a high to medium relative risk of dreissenid mussel establishment and/or introduction. Risk categories were formulated using best professional judgment. The amount of data used to assign risk categories varied for each water body. Data is summarized in Appendix 1 and II, and risk categories based on one or two data points are flagged with an asterisk. Dreissenids can also establish in areas identified with low to very low risk of establishment.

	[Ca ²⁺]		Relative Risk	Relative Risk
Water Body Name	mg/L	pН	Establishment	Introduction
Moses Lake	30.5	8.18	High	High
Potholes Reservoir outflow	28.3	8.14	High	High
Pend Oreille River	20.1		Medium	High
Lake Washington, inflow	18.8	7.77	Medium	High
Banks Lake	17.8	7.90	Medium	High
Columbia River, Lake Celilo	16.8		Medium	High
Columbia River, Lake Bonneville	16.5	8.11	Medium	High
Clear Lake	16.4	8.47	Medium	High
Williams Lake	20.5	7.39	Medium	Medium
Columbia River, Lake Wanapum	18.1	8.02	Medium	Medium
Lake Cresent	15.9	6.94	Medium	Medium
Nooksack River	12.0	7.57	Low	Medium
Silver Lake	10.4	7.49	Very Low	High
Deer Lake	9.3	7.50	Very Low	High
Cowlitz River	8.1	7.47	Very Low	High
Lake Cushman	11.6	7.55	Very Low	Medium
Diamond Lake	7.5	7.90	Very Low	Medium
Mineral Lake, outflow	5.8	7.64	Very Low	Medium
Alder Lake	5.1	7.45	Very Low	Medium
Cle Elum Reservoir	4.7	7.08	Very Low	Medium
Bumping Reservoir	3.8	7.55	Very Low	Medium

When there were multiple measures of boater use, the measure with the highest risk category was used.

In 2017, with generous support from the M.J. Murdock Charitable Trust, WSU Vancouver established the Water Chemistry Facility, a state-of-the-art water chemistry laboratory equipped with an Agilent 7900 ICP MS, a DIONEX Ion Chromatograph, and a Hach Dissolved Organic Carbon and Total Nitrogen Analyzer. Together, these instruments can be used to detect and quantify a broad range of elements and ions. In addition to its own research, the facility also offers its services to researchers, governmental users, and the private sector.

Analytical Capabilities

WSU Vancouver's Water Chemistry Facility is a state-of-the-art water chemistry laboratory equipped with an Agilent 7900 ICP MS, a DIONEX Ion Chromatograph, and a Hach Dissolved Organic Carbon and Total Nitrogen Analyzer. Together, these instruments can be used to detect and quantify a broad range of elements and ions, as summarized in the following table.

List of analytes by instrument

ICPMS Major Elements	Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe
ICPMS Trace Elements	Ag, As, Au, B, Ba, Be, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Gd, Ge, Hf, Ho, Ir, La, Lu, Mn, Mo, Nb, Nd, Ni, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, S, Sc, Sb, Se, Si, Sm, Sn, Ta, Tb, Te, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn, Zr
Ion Chromatograph Anions	Fluoride, Chloride, Nitrite, Bromide, Sulfate, Phosphate
Ion Chromatograph Cations	Na+, NH4+, K+, Mg2+, Ca2+
Dissolved Organic Carbon and Total Nitrogen Analyzer	Total organic carbon, dissolved organic carbon, dissolved inorganic carbon, total nitrogen, total dissolved nitrogen

DOI: 10.1002/rra.3804

SHORT COMMUNICATION

WILEY

Calcium concentrations in the lower Columbia River, USA, are generally sufficient to support invasive bivalve spread

Stephen M. Bollens^{1,2} | John A. Harrison¹ | Marc G. Kramer¹ | Gretchen Rollwagen-Bollens¹ | Timothy D. Counihan³ | Salvador B. Robb-Chavez¹ | Sean T. Nolan¹

¹School of the Environment, Washington State University, Vancouver, Washington

²School of Biological Sciences, Washington State University, Vancouver, Washington

³U.S. Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, Washington

Correspondence

Stephen M. Bollens, School of the Environment, Washington State University, 14204 NE Salmon Creek Avenue, Vancouver. WA 98686-9600, USA. Email: sbollens@wsu.edu

Funding information

M.J. Murdock Charitable Trust, Grant/Award Numbers: PIS-2014374, PIS-2016337: United States National Science Foundation, Grant/ Award Numbers: EAR-1639458, DBI-1461057: United States Department of Agriculture, Grant/Award Number: 2017-67004-26131

Abstract

Dissolved calcium concentration [Ca²⁺] is thought to be a major factor limiting the establishment and thus the spread of invasive bivalves such as zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussels. We measured [Ca²⁺] in 168 water samples collected along \sim 100 river-km of the lower Columbia River, USA, between June 2018 and March 2020. We found $[Ca^{2+}]$ to range from 13 to 18 mg L^{-1} during summer/fall and 5 to 22 mg L⁻¹ during the winter/spring. Previous research indicates that $[Ca^{2+}] < 12 \text{ mg L}^{-1}$ are likely to limit the establishment and spread of invasive bivalves. Thus, our results indicate that there is sufficient Ca²⁺ in most locations in the lower Columbia River to support the establishment of invasive dreissenid mussels, which could join the already widespread and abundant Asian clam (Corbicula fluminea) as the newest invader to an already heavily invaded Columbia River ecosystem. These new data provide important measurements from a heretofore undersampled region of the Columbia River and have important implications for the spread of invasive bivalves and, by extension, the conservation and management of native species and ecosystems.

KEYWORDS

Asian clam Corbicula fluminea, cation concentration, dreissenid mussels, shell formation, water chemistry

Risk of Introduction

High

Risk of Risk of Introduction **Establishment**

> Medium High

Risk of Introduction

Risk of **Establishment**

Potential Economic **Impacts**

High

Medium

Extremely High

Risk of Introduction

Risk of **Establishment**

Potential Economic Impacts

Potential Ecological Impacts

High

Medium

Extremely High Extremely High

Annual allocation of samples by sampling method

		WATER BODY			
FIELD COLLECTION METHOD	LABORATORY ANALYSIS METHOD	THE DALLES RESERVOIR	BONNEVILLE RESERVOIR	"LOWER" COLUMBIA	TOTAL
Plankton tow	CPLM Microscopy	41	285	160	486
Water sample	eDNA	12	84	48	144
TOTAL		53	369	208	630

Results of 2023 Surveys: Dreissenid Veligers

The Good News! Zero Detections!

		WATER BODY			
FIELD COLLECTION METHOD	LABORATORY ANALYSIS METHOD	THE DALLES RESERVOIR	BONNEVILLE RESERVOIR	"LOWER" COLUMBIA	TOTAL
Plankton tow	CPLM Microscopy	0	0	0	0
Water sample	eDNA	0	0	0	0
Total		0	0	0	0

What went well and what posed difficulties?

Everything continues to go "as smooth as silk" WSU has been doing this for many years now, so we are a "well-oiled machine."

We see no difficulties going forward.

Final Food for Thought:

Can the Asian clam, Corbicula fluminea, be used as a model organism for better understanding possible invasions of other bivalves (e.g., Dreissenids) in the CRB and elsewhere?

Rollwagen-Bollens, G. C., B. A. Bolam, S. M. Bollens, S. Henricksen, C. Sandison, and J. Zimmerman. 2021. Temperature-dependent functional response of the invasive Asian clam, Corbicula fluminea, feeding on natural phytoplankton. Inland Waters, 11: 250-256. https://doi.org/10.1080/20442041.2020.1843933

Henricksen, S., and S. M. Bollens. 2022. Abundance and growth of the invasive Asian clam, Corbicula fluminea, in the lower Columbia River, USA. Aquatic Invasions. 17: 36-56. https://doi.org/10.3391/ai.2022.17.1.03

Robb-Chavez, S, S. M. Bollens, G. Rollwagen-Bollens, and T. D. Counihan. 2023. Broadscale distribution, abundance, and habitat associations of the invasive Asian clam (Corbicula fluminea) in the lower Columbia River, USA. International Review of Hydrobiology. 1–17. https://doi.org/10.1002/iroh.202202134

