Reviewing a Year of BWMS Testing

Pacific Ballast Water Group Meeting | 2023 Stephen Loiacono, Scientific Program Manager Golden Bear Research Center

IMO REQUIREMENT: **06.01.2022**

Commissioning Testing - a mandatory requirement that forms part of the installation and commissioning survey of ballast water treatment systems, prior to certification.

Over **10,000** BWMS installations have been completed

GOLDEN BEAR RESEARCH CENTER

- Completed 21 Commissioning Tests (USA, Canada, Caribbean, Europe)
- >70% UV Systems
 (Alpha Laval PureBallast most common)
- Detailed analysis for ≥50 µm size class organisms
- Indicative analysis for ≥10 µm and <50 µm size class organisms (Turner BCII)
- 5 of 21 tests failed (24% failure rate)
 4 of 5 failures were in ≥50 µm size class

GLOBAL TESTNET - RESULTS

- Over **800 tests compiled** since 2017
- ~20% of all tests failed to meet the
 D-2 Standard

Parameter	Type of Testing		
Parameter	Commissioning	Compliance	
Total number of tests	704	134	
Percentage of discharges failing to meet the D-2 Standard	20%	22%	
Percentage of discharge exceeding TRO limits as set by GESAMP (G9 Guidelines)	6%	34%	
Percentage of failed tests involving exceedance in the ≥50 µm size class	81%	93%	
Percentage of failed tests involving exceedance in the ≥10 µm and <50 µm size class	8%	14%	
Percentage of failed tests involving exceedance for <i>E. coli</i>	7%	0%	
Percentage of failed tests involving exceedance for <i>Enterococci</i>	6%	0%	
Percentage of failed tests involving exceedance for <i>V. cholerae</i>	0%	0%	

GLOBAL TESTNET - RESULTS

- Over 800 tests compiled since 2017
- ~20% of all tests failed to meet the
 D-2 Standard
- Highest cause of failure:

≥50 µm size class organisms

Parameter	Type of Testing		
Parameter	Commissioning	Compliance	
Total number of tests	704	134	
Percentage of discharges failing to meet the D-2 Standard	20%	22%	
Percentage of discharge exceeding TRO limits as set by GESAMP (G9 Guidelines)	6%	34%	
Percentage of failed tests involving exceedance in the ≥50 μm size class	81%	93%	
Percentage of failed tests involving exceedance in the ≥10 µm and <50 µm size class	8%	14%	
Percentage of failed tests involving exceedance for <i>E. coli</i>	7%	0%	
Percentage of failed tests involving exceedance for <i>Enterococci</i>	6%	0%	
Percentage of failed tests involving exceedance for <i>V. cholerae</i>	0%	0%	

IF THE BWMS WORKS, WHY ARE THESE TESTS FAILING?

- Short Answer: Human Error
 - Crew forgot to close the sea chest
 - Pipes were not flushed properly
 - UV bulbs not cleaned
 - Crew discharged before Maximum
 Allowable Discharge Concentration
 was met (Bulk Chemical)
 - Contamination from leaky valves

IF THE BWMS WORKS, WHY ARE THESE TESTS FAILING?

Conclusion: A BWMS working
 perfectly will fail if the ship's crew
 make mistakes or ship has
 compromised equipment.

GOLDEN BEAR RESEARCH CENTER

- 1 failure was reversed due to detailed analysis of
 ≥10 µm and <50 µm size class
- Environmentally, it's better to have a false positive than a false negative, but that comes at a price to the ship owner

View through an Epifluorescent Microscope (Dosed with FDA & CMFDA)

Gridlines are 18 microns thick

QUESTION:
HOW WELL DO THESE SYSTEMS WORK ONCE INSTALLED?

METHODS

- 10 SHIPS
- CONCENTRATE ≥ 1m³ OF TREATED BALLAST WATER (IMO GUIDELINES)
- FULL DETAILED ANALYSIS:

≥10 µM AND <50 µM ORGANISMS (EPIFLUORESCENT MICROSCOPE)

≥50 µM ORGANISMS (STEREO MICROSCOPE)

RESULTS

Vessel	BW MS Model	BWMS Technology	Source Water Location	Live Organisms	Live Organisms 10-50	
				>50 um/m ³	Average ^a	SD
1	Alfa Laval PureBallast 3.1	Ultraviolet	Seattle, WA	1.8*	0.3	0.6
2	Alfa Laval Pure Ballast 3.1	Ultraviolet	Selby, CA	6.0	7.7	2.1
3	Sunrui BalClor BC 1500	Electrochlorination	Tampa, FL	0.7*	0.3*	0.0
4	Ecochlor Series 200	Chlorine Dioxide	Long Be ach, CA	0.5*	0.3	0.6
5	Ecochlor ET-5700-5.0	Chlorine Dioxide	Long Be ach, CA	1.0*	4.7	1.2
6	Alfa Laval 3.2 Compact Flex 500	Ultraviolet	Nova Scotia, Canada	1.0	0.3*	0.0
7 ^b	Sunrui BC3000	Ultraviolet	Stockton, CA	1.0*	3.3	1.5
8	Desmi CompactCle an 500	Ultraviolet	San Francico Bay, CA	1.0*	6	1.7
9⁰	MIURA CO. LTD HK-(E)R	Ultraviolet	Benicia, CA	4.0	0.3*	0.0
10 ^b	1500 TYPE JFE Ball astAce	Chlorine	Pacific (Open Ocean)	<1.0*	24.3	6.7

RESULTS

Vessel	BW MS Model	BWMS Technology	Source Water Location	Live Organisms >50 um/m ³	Live Organism Average ^a	ns 10-50 SD
1	Alfa Laval PureBallast 3.1	Ultraviolet	Seattle, WA	1.8*	0.3	0.6
2	Alfa Laval PureBallast 3.1	Ultraviolet	Selby, CA	6.0	7.7	2.1
3	Sunrui BalClor BC 1500	Electrochlorination	Tampa, FL	0.7*	0.3*	0.0
4	Ecochlor Series 200	Chlorine Dioxide	Long Beach, CA	0.5*	0.3	0.6
5	Ecochlor ET-5700-5.0	Chlorine Dioxide	Long Be ach, CA	1.0*	4.7	1.2
6	Alfa Laval 3.2 Compact Flex 500	Ultraviolet	Nova Scotia, Canada	1.0	0.3*	0.0
7 ^b	Sunrui BC3000	Ultraviolet	Stockton, CA	1.0*	3.3	1.5
8	Desmi CompactCle an 500	Ultraviolet	San Franci co Bay, CA	1.0*	6	1.7
9⁰	MIURA CO. LTD HK-(E)R	Ultraviolet	Benicia, CA	4.0	0.3*	0.0
10 ^b	1500 TYPE JFE BallastAce	Chlorine	Pacific (Open Ocean)	<1.0*	24.3	6.7
					-	

All vessels passed in the >50 μ m size class (7 out of 10 - No living organisms detected)

RESULTS

Vessel	BW MS Model	BWMS Technology	Source Water Location	Live Organisms	Live Organis	ms 10-50
vessei				>50 um/m ³	Average ^a	SD
1	Alfa Laval PureBallast 3.1	Ultraviolet	Seattle, WA	1.8*	0.3	0.6
2	Alfa Laval PureBallast 3.1	Ultraviolet	Selby, CA	6.0	7.7	2.1
3	Sunrui BalClor BC 1500	Electrochlorination	Tampa, FL	0.7*	0.3*	0.0
4	Ecochlor Series 200	Chlorine Dioxide	Long Beach, CA	0.5*	0.3	0.6
5	Ecochlor ET-5700-5.0	Chlorine Dioxide	Long Beach, CA	1.0*	4.7	1.2
6	Alfa Laval 3.2 Compact Flex 500	Ultraviolet	Nova Scotia, Canada	1.0	0.3*	0.0
7 ^b	Sunrui BC3000	Ultraviolet	Stockton, CA	1.0*	3.3	1.5
8	Desmi CompactClean 500	Ultraviolet	San Francico Bay, CA	1.0*	6	1.7
9°	MIURA CO. LTD HK-(E)R	Ultraviolet	Benicia, CA	4.0	0.3*	0.0
10 ^b	1500 TYPE JFE Ball astAce	Chlorine	Pacific (Open Ocean)	<1.0*	24.3	6.7
	•					

All vessels passed in the >50 μ m size class (7 out of 10 - No living organisms detected)

1 fail in the ≥10 µm and <50 µm size class

CONCLUSIONS

THESE SYSTEMS WORK VERY WELL

IMPORTANT TO CONSIDER:

7 OF THE 10 SAMPLING EVENTS WERE COMMISSIONING TESTS.

- BALLAST TANKS WERE RECENTLY CLEANED

-CREW WERE RECENTLY TRAINED

HOW WILL THESE SYSTEMS PERFORM IN 5 – 10 YEARS?

Thank you

Pacific Ballast Water Group Meeting | 2023 Stephen Loiacono, Scientific Program Manager Golden Bear Research Center