

Evaluating the accuracy and practical application of ballast water compliance monitoring devices

Oscar Casas-Monroy, Jocelyn Kydd, Dawson Ogilvie, Robin Rozon, Sean Yardley, Sarah Bailey Great Lakes Laboratory for Fisheries and Aquatic Sciences Burlington, ON

Objectives

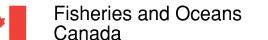
Evaluate CMD accuracy

 Determine whether CMDs provide a reliable indication of [non-]compliance with Regulation D-2

Assess practical application

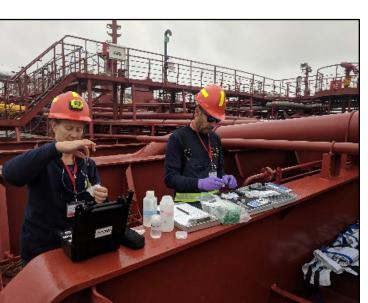
 Explore the benefits and drawbacks of using CMDs as a tool for compliance monitoring

CMD = compliance monitoring device



Pêches et Océans Canada

Compliance Monitoring Devices

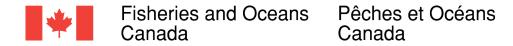

	BQUA	BallastWISE	Ballast Eye
Units of measurement	ATP (pg m ³ or pg mL ¹)	Ind. m ³ or Ind. mL ¹	Ind. m ³ or Ind. mL ¹
Protocol complexity	Complex	Simple	Moderate
Processing time	1 – 1.5 h / sample	1 – 1.5 h / sample	20 – 45 min. / sample (temperature dependent)
Preferred sample temp.	None	None	20 – 30°C
Serviced	Canada	Denmark	Japan

1) Ballast samples

- 20 treated discharge samples (marine)
- 7 paired uptake/discharge samples (fresh water)
- BQUA only

Experiments

2) Natural water samples


- 7 individual tests
 - o 3 marine
 - \circ 4 fresh water
- Low, medium, high organism concentrations
- BQUA, BallastWISE, Ballast Eye

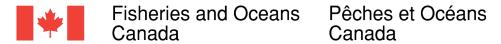
3) Ballast discharge in Arctic

- 21 treated discharge samples (marine)
- Milne Port, NU
- Ballast Eye only

Casas-Monroy *et al.* 2023 Journal of Plankton Research 45: 540–553. <u>https://doi.org/10.1093/plankt/fbad014</u>

Analysis

Two regulated organism size classes:


- \geq 50 µm (mostly zooplankton)
- $\geq 10 \mu m \langle 50 \mu m \pmod{\frac{1}{2}}$ (mostly phytoplankton)

Analysis approach:

 Evaluated accuracy based on percentage agreement with microscopy counts above or below the D-2 standard

CMD Accuracy

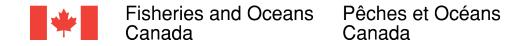
			≥ 50 μm		10 – 50 µm		
	Sample	Water	I	False negative	e F	False negative	
 CMD	type	source	Agreement (%)	rates (%)	Agreement (%)	rates (%)	
B-QUA	Ballast	Marine	85	5	100	0	
		Fresh	93	7	79	21	
	Lab	Fresh	67	33	33	67	
BallastWISE	Lab	Marine	67	22	56	44	
		Fresh	83	8	83	17	
Ballast Eye	Ballast	Marine	81	~10	100*	0*	
	Lab	Marine	100	0	56	44	
		Fresh	100	0	75	0	
*All zero counts (no live cells)							

Casas-Monroy et al. 2023; Bailey, Howland et al. (unpublished)

BQUA

- Performed well during ship tests, but not lab tests (FW)
- Complex protocol
- Consumables cost
- Results difficult to convert to counts

Summary of the CMDs


BallastWISE

- Performed well during lab tests (no ship tests)
- Simple protocol
- Results are counts
- No consumables
- Sensitive to vibration and level positioning

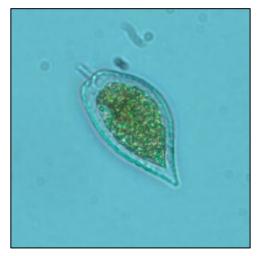
Ballast Eye

- Performed well during ship and lab tests
- Protocol has moderate complexity
- Results are counts
- Consumables cost
- Warming cold sample may impact organism viability

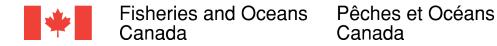
Benefits of CMDs

Rapid detection & decision-making

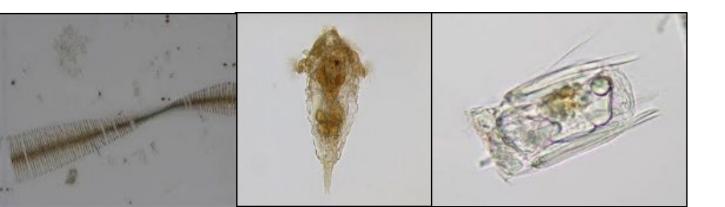
- Rapid results could help PSC officers decide if further testing is needed
- Identify high-risk non-compliance


Standardization & consistency

• Automated monitoring reduces human error and improves consistency


Cost & time efficiency

- Fast and easy to use with minimal training
- Reduces lab testing time, enabling frequent, low-cost monitoring

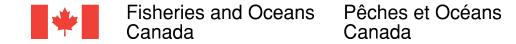


Drawbacks of CMDs

- Detection limits may vary depending on water conditions (e.g. high turbidity)
- Maintenance, repair, and training could be challenging
- Lack of international CMD standardization
- Investment risk if devices/support are discontinued
- **Challenge: obtaining representative ballast water samples (time/logistics)

Sample Collection Ballast Catch vs. Plankton Nets

Ballast Catch


- Susceptible to mesh explosion (pressure)
- Flow rates restricted to 30 40 L/min
- No flow control valve supplied
- Simple to use
- Portable

Sampling wand w/plankton nets

- Mesh with larger surface area (open unit)
- No flow rate restrictions
- Integrated flow control valve
- More complex to use, requires flow rate calculations
- Difficult to transport

Questions?

Thank you to current and previous lab members; CMD manufacturers for technical assistance and equipment loans; St. Andrews Biological Stations (SABS); crew from the CCGS Viola M. Davidson; commercial ships' crews and their respective owners and port agents.

Funding Partners:

- •Transport Canada
- •Fisheries and Oceans Canada

Casas-Monroy et al. 2022. Assessing the performance of four indicative analysis devices for ballast water compliance monitoring, considering organisms in the size range ≥ 10 to $<50 \ \mu m$ Journal of Sea Research. https://doi.org/10.1016/j.jenvman.2022.115300

Casas-Monroy et al. 2023. Examining the performance of three ballast water compliance monitoring devices for quantifying live of organisms both regulated size class \geq 50 µm and \geq 10 to <50 µm Journal of Plankton Research. <u>https://doi.org/10.1093/plankt/fbad014</u>

